learnxinyminutes-docs/de/lua.md
2024-12-28 03:50:35 -08:00

423 lines
15 KiB
Markdown

---
contributors:
- ["Tyler Neylon", "http://tylerneylon.com/"]
translators:
- ["Martin Schimandl", "https://github.com/Git-Jiro"]
---
```lua
-- Zwei Gedankenstriche starten ein einzeiliges Kommentar.
--[[
Fügt man zwei '[' und ']' hinzu,
erzeugt man einen mehrzeiligen Kommentar.
--]]
--------------------------------------------------------------------------------
-- 1. Variablen und Fluß-Kontrolle.
--------------------------------------------------------------------------------
num = 42 -- Alle Nummern sind vom Typ: Double.
-- Werd nicht nervös, 64-Bit Double haben 52 Bits zum Speichern von exakten
-- Ganzzahlen; Maschinen-Genauigkeit ist kein Problem für Ganzzahlen kleiner als
-- 52 Bit.
s = 'walternate' -- Zeichenketten sind unveränderlich, wie bei Python.
t = "Doppelte Anführungszeichen sind auch OK"
u = [[ Doppelte eckige Klammern
beginnen und beenden
mehrzeilige Zeichenketten.]]
t = nil -- Undefinieren von t; Lua hat einen Garbage Collection.
-- Blöcke werden durch Schlüsselwörter wie do/end markiert:
while num < 50 do
num = num + 1 -- Es gibt keine Operatoren wie ++ oder +=
end
-- If Bedingungen:
if num > 40 then
print('over 40')
elseif s ~= 'walternate' then -- ~= bedeutet ungleich
-- Gleichheits-Check == wie bei Python; OK für Zeichenketten.
io.write('not over 40\n') -- Standard ist stdout.
else
-- Variablen sind standardmäßig global.
thisIsGlobal = 5 -- Camel case ist üblich.
-- So macht man eine Variable lokal:
local line = io.read() -- Lies die nächste Zeile von stdin.
-- Zeichenketten zusammenführen mit dem .. Operator:
print('Winter is coming, ' .. line)
end
-- Undefinierte Variablen geben nil zurück.
-- Das ist kein Fehler:
foo = anUnknownVariable -- Nun ist foo = nil.
aBoolValue = false
-- Nur nil und false sind unwahr; 0 and '' sind wahr!
if not aBoolValue then print('was false') end
-- 'or' und 'and' sind "kurz-geschlossen". Das ist so ähnlich wie der a?b:c
-- operator in C/js:
-- in C/js:
ans = aBoolValue and 'yes' or 'no' --> 'no'
karlSum = 0
for i = 1, 100 do -- Ein Bereich inkludiert beide Enden.
karlSum = karlSum + i
end
-- Verwende "100, 1, -1" als Bereich für Countdowns:
fredSum = 0
for j = 100, 1, -1 do fredSum = fredSum + j end
-- Im Allgemeinen besteht ein Bereich aus: Anfang, Ende, [, Schrittweite].
-- Ein anderes Schleifen-Konstrukt:
repeat
print('Der Weg der Zukunft')
num = num - 1
until num == 0
--------------------------------------------------------------------------------
-- 2. Funktionen.
--------------------------------------------------------------------------------
function fib(n)
if n < 2 then return n end
return fib(n - 2) + fib(n - 1)
end
-- Closures und anonyme Funktionen sind ok:
function adder(x)
-- Die zurückgegebene Funktion wird erzeugt wenn addr aufgerufen wird und merkt
-- sich den Wert von x:
return function (y) return x + y end
end
a1 = adder(9)
a2 = adder(36)
print(a1(16)) --> 25
print(a2(64)) --> 100
-- Rückgabewerte, Funktions-Aufrufe und Zuweisungen funktionieren alle mit
-- Listen die nicht immer gleich lang sein müssen. Überzählige Empfänger
-- bekommen nil; überzählige Sender werden ignoriert.
x, y, z = 1, 2, 3, 4
-- Nun ist x = 1, y = 2, z = 3, und 4 wird ignoriert.
function bar(a, b, c)
print(a, b, c)
return 4, 8, 15, 16, 23, 42
end
x, y = bar('zaphod') --> prints "zaphod nil nil"
-- Nun ist x = 4, y = 8, die Werte 15..42 werden ignoriert.
-- Funktionen sind erste Klasse, und können lokal oder global sein.
-- Das ist alles das Gleiche:
function f(x) return x * x end
f = function (x) return x * x end
-- Das auch:
local function g(x) return math.sin(x) end
local g = function(x) return math.sin(x) end
-- Äquivalent zu local function g(x)..., außer das Referenzen auf g im
-- Funktions-Körper nicht wie erwartet funktionieren.
local g; g = function (x) return math.sin(x) end
-- Die Deklaration 'local g' macht Selbst-Referenzen auf g OK.
-- Nebenbei gesagt, Trigonometrie-Funktionen verwenden Radianten.
-- Funktionsaufrufe mit nur einem Zeichenketten-Parameter brauch keine runden
-- Klammern.
print 'hello' -- Funktioniert wunderbar.
-- Funktionsaufrufe mit einem Tabellen-Parameter brauchen auch keine runden
-- Klammern. Mehr zu Tabellen kommt später.
print {} -- Funktioniert auch wunderbar.
--------------------------------------------------------------------------------
-- 3. Tabellen.
--------------------------------------------------------------------------------
-- Tabellen sind die einzige zusammengesetzte Struktur in Lua. Sie sind
-- assoziative Arrays. Sie sind so ähnlich wie PHP arrays oder JavaScript
-- Objekte. Sie sind Hash-Lookup-Dictionaries die auch als Listen verwendet
-- werden können.
-- Verwenden von Tabellen als Dictionaries oder Maps:
-- Dict-Literale haben standardmäßig Zeichenketten als Schlüssel:
t = {key1 = 'value1', key2 = false}
-- Zeichenketten-Schlüssel verwenden eine JavaScript ähnliche Punkt-Notation.
print(t.key1) -- Ausgabe 'value1'.
t.newKey = {} -- Neues Schlüssel/Wert-Paar hinzufügen.
t.key2 = nil -- key2 aus der Tabelle entfernen.
-- Literale Notation für jeden (nicht-nil) Wert als Schlüssel:
u = {['@!#'] = 'qbert', [{}] = 1729, [6.28] = 'tau'}
print(u[6.28]) -- Ausgabe "tau"
-- Schlüssel-Vergleiche funktionieren per Wert für Nummern und Zeichenketten,
-- aber über die Identität bei Tabellen.
a = u['@!#'] -- Nun ist a = 'qbert'.
b = u[{}] -- Wir würden 1729 erwarten, aber es ist nil:
-- b = nil weil der Lookup fehlschlägt. Er schlägt Fehl, weil der Schlüssel
-- den wir verwendet haben nicht das gleiche Objekt ist das wir verwendet
-- haben um den original Wert zu speichern. Zahlen und Zeichenkette sind daher
-- die praktischeren Schlüssel.
-- Eine Funktion mit nur einem Tabellen-Parameter benötigt keine Klammern.
function h(x) print(x.key1) end
h{key1 = 'Sonmi~451'} -- Ausgabe 'Sonmi~451'.
for key, val in pairs(u) do -- Tabellen-Iteration.
print(key, val)
end
-- _G ist eine spezielle Tabelle die alles Globale enthält.
print(_G['_G'] == _G) -- Ausgabe 'true'.
-- Verwenden von Tabellen als Listen/Arrays:
-- Listen-Literale verwenden implizit Ganzzahlen als Schlüssel:
v = {'value1', 'value2', 1.21, 'gigawatts'}
for i = 1, #v do -- #v ist die Größe von v für Listen.
print(v[i]) -- Indices beginnen mit 1 !! SO VERRÜCKT!
end
-- Eine 'Liste' ist kein echter Typ. v ist nur eine Tabelle mit fortlaufenden
-- Ganzzahlen als Schlüssel, die behandelt wird wie eine Liste.
--------------------------------------------------------------------------------
-- 3.1 Metatabellen und Metamethoden
--------------------------------------------------------------------------------
-- Eine Tabelle kann eine Metatabelle haben. Diese verleiht ihr so etwas wie
-- Tabellen-Operator-Überladungs-Verhalten. Später sehen wir wie
-- Metatabellen js-prototypen artiges Verhalten unterstützen.
f1 = {a = 1, b = 2} -- Repräsentiert den Bruch a/b.
f2 = {a = 2, b = 3}
-- Dies würde Fehlschlagen:
-- s = f1 + f2
metafraction = {}
function metafraction.__add(f1, f2)
local sum = {}
sum.b = f1.b * f2.b
sum.a = f1.a * f2.b + f2.a * f1.b
return sum
end
setmetatable(f1, metafraction)
setmetatable(f2, metafraction)
s = f1 + f2 -- Rufe __add(f1, f2) vom der Metatabelle von f1 auf.
-- f1 und f2 haben keine Schlüssel für ihre Metatabellen, anders als bei js
-- Prototypen. Daher muss mithilfe von getmetatable(f1) darauf zugegriffen
-- werden. Eine Metatabelle ist wie eine normale Tabelle mit Schlüsseln die
-- Lua bekannt sind, so wie __add.
-- Die nächste Zeile schlägt fehl weil s keine Metatabelle hat:
-- t = s + s
-- Mithilfe von Klassen ähnlichen Mustern kann das gelöst werden.
-- Siehe weiter unten.
-- Ein __index einer Metatabelle überlädt Punkt-Lookups:
defaultFavs = {animal = 'gru', food = 'donuts'}
myFavs = {food = 'pizza'}
setmetatable(myFavs, {__index = defaultFavs})
eatenBy = myFavs.animal -- Funktioniert dank Metatabelle!
--------------------------------------------------------------------------------
-- Direkte Tabellen-Lookups die fehlschlagen werden mithilfe von __index der
-- Metatabelle wiederholt. Das geschieht rekursiv.
-- __index kann auch eine Funktion mit der Form function(tbl, key) sein.
-- Damit kann man Lookups weiter anpassen.
-- Werte wie __index,add, .. werden Metamethoden genannt.
-- HIer eine vollständige Liste aller Metamethoden.
-- __add(a, b) für a + b
-- __sub(a, b) für a - b
-- __mul(a, b) für a * b
-- __div(a, b) für a / b
-- __mod(a, b) für a % b
-- __pow(a, b) für a ^ b
-- __unm(a) für -a
-- __concat(a, b) für a .. b
-- __len(a) für #a
-- __eq(a, b) für a == b
-- __lt(a, b) für a < b
-- __le(a, b) für a <= b
-- __index(a, b) <fn or a table> für a.b
-- __newindex(a, b, c) für a.b = c
-- __call(a, ...) für a(...)
--------------------------------------------------------------------------------
-- 3.2 Klassen-Artige Tabellen und Vererbung.
--------------------------------------------------------------------------------
-- Klassen sind in Lua nicht eingebaut. Es gibt verschiedene Wege sie mithilfe
-- von Tabellen und Metatabellen zu erzeugen.
-- Die Erklärung des Beispiels erfolgt unterhalb.
Dog = {} -- 1.
function Dog:new() -- 2.
local newObj = {sound = 'woof'} -- 3.
self.__index = self -- 4.
return setmetatable(newObj, self) -- 5.
end
function Dog:makeSound() -- 6.
print('I say ' .. self.sound)
end
mrDog = Dog:new() -- 7.
mrDog:makeSound() -- 'I say woof' -- 8.
-- 1. Dog verhält sich wie eine Klasse; Ist aber eine Tabelle.
-- 2. "function tablename:fn(...)" ist das gleiche wie
-- "function tablename.fn(self, ...)", Der : fügt nur ein Argument namens
-- self hinzu. Siehe 7 & 8 um zu sehen wie self seinen Wert bekommt.
-- 3. newObj wird eine Instanz von Dog.
-- 4. "self" ist die zu instanziierende Klasse. Meistern ist self = Dog, aber
-- dies kann durch Vererbung geändert werden. newObj bekommt die Funktionen
-- von self wenn wir die Metatabelle von newObj und __index von self auf
-- self setzen.
-- 5. Zur Erinnerung: setmetatable gibt sein erstes Argument zurück.
-- 6. Der Doppelpunkt funktioniert wie bei 2, aber dieses Mal erwarten wir das
-- self eine Instanz ist und keine Klasse.
-- 7. Das Selbe wie Dog.new(Dog), also self = Dog in new().
-- 8. Das Selbe wie mrDog.makeSound(mrDog); self = mrDog.
--------------------------------------------------------------------------------
-- Vererbungs-Beispiel:
LoudDog = Dog:new() -- 1.
function LoudDog:makeSound()
local s = self.sound .. ' ' -- 2.
print(s .. s .. s)
end
seymour = LoudDog:new() -- 3.
seymour:makeSound() -- 'woof woof woof' -- 4.
--------------------------------------------------------------------------------
-- 1. LoudDog bekommt die Methoden und Variablen von Dog.
-- 2. self hat einen 'sound' Schlüssel von new(), siehe 3.
-- 3. Das Gleiche wie "LoudDog.new(LoudDog)", und umgewandelt zu "Dog.new(LoudDog)"
-- denn LoudDog hat keinen 'new' Schlüssel, aber "__index = Dog" steht in der
-- Metatabelle.
-- Ergebnis: Die Metatabelle von seymour ist LoudDog und "LoudDog.__index = Dog".
-- Daher ist seymour.key gleich seymour.key, LoudDog.key, Dog.key, je nachdem
-- welche Tabelle als erstes einen passenden Schlüssel hat.
-- 4. Der 'makeSound' Schlüssel wird in LoudDog gefunden: Das ist das Gleiche
-- wie "LoudDog.makeSound(seymour)".
-- Wenn nötig, sieht new() einer Sub-Klasse genau so aus wie new() der
-- Basis-Klasse:
function LoudDog:new()
local newObj = {}
-- set up newObj
self.__index = self
return setmetatable(newObj, self)
end
--------------------------------------------------------------------------------
-- 4. Module.
--------------------------------------------------------------------------------
--[[ Dieser Abschnitt ist auskommentiert damit der Rest des Skripts lauffähig
-- bleibt.
```
```lua
-- Angenommen mod.lua sieht so aus:
local M = {}
local function sayMyName()
print('Hrunkner')
end
function M.sayHello()
print('Why hello there')
sayMyName()
end
return M
-- Eine andere Datei könnte die Funktionen in mod.lua so verwenden:
local mod = require('mod') -- Führe mod.lua aus.
-- require ist der Standard-Weg um Module zu inkludieren.
-- require verhält sich wie: (Wenn nicht gecached wird; siehe später)
local mod = (function ()
<Inhalt von mod.lua>
end)()
-- Es ist als ob mod.lua eine Funktion wäre, sodass lokale Variablen in
-- mod.lua ausserhalb unsichtbar sind.
-- Das funktioniert weil mod hier das Gleiche wie M in mod.lua ist:
mod.sayHello() -- Says hello to Hrunkner.
-- Das ist Falsch: sayMyName existiert nur in mod.lua:
mod.sayMyName() -- Fehler
-- Der Rückgabe-Wert von require wird zwischengespeichert. Sodass Module nur
-- einmal abgearbeitet werden, auch wenn sie mit require öfters eingebunden
-- werden.
-- Nehmen wir an mod2.lua enthält "print('Hi!')".
local a = require('mod2') -- Ausgabe Hi!
local b = require('mod2') -- Keine Ausgabe; a=b.
-- dofile ist wie require aber ohne Zwischenspeichern.
dofile('mod2') --> Hi!
dofile('mod2') --> Hi! (läuft nochmal, nicht wie require)
-- loadfile ladet eine lua Datei aber die Datei wird noch nicht abgearbeitet.
f = loadfile('mod2') -- Sobald f() aufgerufen wird läuft mod2.lua.
-- loadstring ist loadfile für Zeichenketten
g = loadstring('print(343)') -- Gibt eine Funktion zurück..
g() -- Ausgabe 343; Vorher kam keine Ausgabe.
--]]
```
## Referenzen
Ich war so begeistert Lua zu lernen, damit ich Spiele mit [LÖVE game engine](http://love2d.org/) programmieren konnte.
Ich habe angefangen mit [BlackBulletIV's Lua for programmers](http://nova-fusion.com/2012/08/27/lua-for-programmers-part-1/).
Danach habe ich das offizielle Lua Buch gelesen: [Programming in Lua](http://www.lua.org/pil/contents.html)
Es kann auch hilfreich sein hier vorbeizuschauen: [Lua short reference](http://lua-users.org/files/wiki_insecure/users/thomasl/luarefv51.pdf)
Wichtige Themen die hier nicht angesprochen wurden; die Standard-Bibliotheken:
* [`string` library](http://lua-users.org/wiki/StringLibraryTutorial)
* [`table` library](http://lua-users.org/wiki/TableLibraryTutorial)
* [`math` library](http://lua-users.org/wiki/MathLibraryTutorial)
* [`io` library](http://lua-users.org/wiki/IoLibraryTutorial)
* [`os` library](http://lua-users.org/wiki/OsLibraryTutorial)
Übrigens, die gesamte Datei ist gültiges Lua. Speichere sie als learn.lua und
starte sie als "`lua learn.lua`" !
Die Erstfassung ist von tylerneylon.com, und ist auch hier verfügbar: [GitHub gist](https://gist.github.com/tylerneylon/5853042). Viel Spaß mit Lua!