mirror of
https://github.com/adambard/learnxinyminutes-docs.git
synced 2025-01-15 05:35:59 +00:00
ef37db634a
After review from from Nami-Doc
159 lines
5.0 KiB
Markdown
159 lines
5.0 KiB
Markdown
---
|
|
language: TypeScript
|
|
contributors:
|
|
- ["Philippe Vlérick", "https://github.com/pvlerick"]
|
|
filename: learntypescript.ts
|
|
---
|
|
|
|
TypeScript is a language that aims at easing development of large scale applications written in JavaScript.
|
|
TypeScript adds common concepts such as classes, modules, interfaces, generics and (optional) static typing to JavaScript.
|
|
It is a superset of JavaScript: all JavaScript code is valid TypeScript code so it can be added seamlessly to any project. The TypeScript compiler emits JavaScript.
|
|
|
|
This article will focus only on TypeScript extra syntax, as oposed to [JavaScript] (../javascript/).
|
|
|
|
To test TypeScript's compiler, head to the [Playground] (http://www.typescriptlang.org/Playground) where you will be able to type code, have auto completion and directly see the emitted JavaScript.
|
|
|
|
```ts
|
|
//There are 3 basic types in TypeScript
|
|
var isDone: boolean = false;
|
|
var lines: number = 42;
|
|
var name: string = "Anders";
|
|
|
|
//..When it's impossible to know, there is the "Any" type
|
|
var notSure: any = 4;
|
|
notSure = "maybe a string instead";
|
|
notSure = false; // okay, definitely a boolean
|
|
|
|
//For collections, there are typed arrays and generic arrays
|
|
var list: number[] = [1, 2, 3];
|
|
//Alternatively, using the generic array type
|
|
var list: Array<number> = [1, 2, 3];
|
|
|
|
//For enumerations:
|
|
enum Color {Red, Green, Blue};
|
|
var c: Color = Color.Green;
|
|
|
|
//Lastly, "void" is used in the special case of a function not returning anything
|
|
function bigHorribleAlert(): void {
|
|
alert("I'm a little annoying box!");
|
|
}
|
|
|
|
//Functions are first class citizens, support the lambda "fat arrow" syntax and use type inference
|
|
//All examples are equivalent, the same signature will be infered by the compiler, and same JavaScript will be emitted
|
|
var f1 = function(i: number) : number { return i * i; }
|
|
var f2 = function(i: number) { return i * i; } //Return type infered
|
|
var f3 = (i : number) : number => { return i * i; }
|
|
var f4 = (i: number) => { return i * i; } //Return type infered
|
|
var f5 = (i: number) => i * i; //Return type infered, one-liner means no return keyword needed
|
|
|
|
//Interfaces are structural, anything that has the properties is compliant with the interface
|
|
interface Person {
|
|
name: string;
|
|
//Optional properties, marked with a "?"
|
|
age?: number;
|
|
//And of course functions
|
|
move(): void;
|
|
}
|
|
|
|
//..Object that implements the "Person" interface
|
|
var p : Person = { name: "Bobby", move : () => {} }; //Can be treated as a Person since it has the name and age properties
|
|
//..Objects that have the optional property:
|
|
var validPerson : Person = { name: "Bobby", age: 42, move: () => {} };
|
|
var invalidPerson : Person = { name: "Bobby", age: true }; //Is not a person because age is not a number
|
|
|
|
//..Interfaces can also describe a function type
|
|
interface SearchFunc {
|
|
(source: string, subString: string): boolean;
|
|
}
|
|
//..Only the parameters' types are important, names are not important.
|
|
var mySearch: SearchFunc;
|
|
mySearch = function(src: string, sub: string) {
|
|
return src.search(sub) != -1;
|
|
}
|
|
|
|
//Classes - members are public by default
|
|
class Point {
|
|
//Properties
|
|
x: number;
|
|
|
|
//Constructor - the public/private keywords in this context will generate the boiler plate code
|
|
// for the property and the initialization in the constructor.
|
|
// In this example, "y" will be defined just like "x" is, but with less code
|
|
//Default values are also supported
|
|
constructor(x: number, public y: number = 0) {
|
|
this.x = x;
|
|
}
|
|
|
|
//Functions
|
|
dist() { return Math.sqrt(this.x * this.x + this.y * this.y); }
|
|
|
|
//Static members
|
|
static origin = new Point(0, 0);
|
|
}
|
|
|
|
var p1 = new Point(10 ,20);
|
|
var p2 = new Point(25); //y will be 0
|
|
|
|
//Inheritance
|
|
class Point3D extends Point {
|
|
constructor(x: number, y: number, public z: number = 0) {
|
|
super(x, y); //Explicit call to the super class constructor is mandatory
|
|
}
|
|
|
|
//Overwrite
|
|
dist() {
|
|
var d = super.dist();
|
|
return Math.sqrt(d * d + this.z * this.z);
|
|
}
|
|
}
|
|
|
|
//Modules, "." can be used as separator for sub modules
|
|
module Geometry {
|
|
export class Square {
|
|
constructor(public sideLength: number = 0) {
|
|
}
|
|
area() {
|
|
return Math.pow(this.sideLength, 2);
|
|
}
|
|
}
|
|
}
|
|
|
|
var s1 = new Geometry.Square(5);
|
|
|
|
//..Local alias for referencing a module
|
|
import G = Geometry;
|
|
|
|
var s2 = new G.Square(10);
|
|
|
|
//Generics
|
|
//..Classes
|
|
class Tuple<T1, T2> {
|
|
constructor(public item1: T1, public item2: T2) {
|
|
}
|
|
}
|
|
|
|
//..Interfaces
|
|
interface Pair<T> {
|
|
item1: T;
|
|
item2: T;
|
|
}
|
|
|
|
//..And functions
|
|
var pairToTuple = function<T>(p: Pair<T>) {
|
|
return new Tuple(p.item1, p.item2);
|
|
};
|
|
|
|
var tuple = pairToTuple({ item1:"hello", item2:"world"});
|
|
|
|
//Including references to a definition file:
|
|
/// <reference path="jquery.d.ts" />
|
|
|
|
```
|
|
|
|
## Further Reading
|
|
* [TypeScript Official website] (http://www.typescriptlang.org/)
|
|
* [TypeScript language specifications (pdf)] (http://go.microsoft.com/fwlink/?LinkId=267238)
|
|
* [Anders Hejlsberg - Introducing TypeScript on Channel 9] (http://channel9.msdn.com/posts/Anders-Hejlsberg-Introducing-TypeScript)
|
|
* [Source Code on GitHub] (https://github.com/Microsoft/TypeScript)
|
|
* [Definitely Typed - repository for type definitions] (http://definitelytyped.org/)
|