18 KiB
评论以 # 开始
R 语言原生不支持 多行注释
但是你可以像这样来多行注释
在窗口里按回车键可以执行一条命令
###################################################################
不用懂编程就可以开始动手了
###################################################################
data() # 浏览内建的数据集 data(rivers) # 北美主要河流的长度(数据集) ls() # 在工作空间中查看「河流」是否出现 head(rivers) # 撇一眼数据集
735 320 325 392 524 450
length(rivers) # 我们测量了多少条河流?
141
summary(rivers)
Min. 1st Qu. Median Mean 3rd Qu. Max.
135.0 310.0 425.0 591.2 680.0 3710.0
stem(rivers) # 茎叶图(一种类似于直方图的展现形式)
The decimal point is 2 digit(s) to the right of the |
0 | 4
2 | 011223334555566667778888899900001111223333344455555666688888999
4 | 111222333445566779001233344567
6 | 000112233578012234468
8 | 045790018
10 | 04507
12 | 1471
14 | 56
16 | 7
18 | 9
20 |
22 | 25
24 | 3
26 |
28 |
30 |
32 |
34 |
36 | 1
stem(log(rivers)) # 查看数据集的方式既不是标准形式,也不是取log后的结果! 看起来,是钟形曲线形式的基本数据集
The decimal point is 1 digit(s) to the left of the |
48 | 1
50 |
52 | 15578
54 | 44571222466689
56 | 023334677000124455789
58 | 00122366666999933445777
60 | 122445567800133459
62 | 112666799035
64 | 00011334581257889
66 | 003683579
68 | 0019156
70 | 079357
72 | 89
74 | 84
76 | 56
78 | 4
80 |
82 | 2
hist(rivers, col="#333333", border="white", breaks=25) # 试试用这些参数画画 (译者注:给 river 做统计频数直方图,包含了这些参数:数据源,颜色,边框,空格) hist(log(rivers), col="#333333", border="white", breaks=25) #你还可以做更多式样的绘图
还有其他一些简单的数据集可以被用来加载。R 语言包括了大量这种 data()
data(discoveries) plot(discoveries, col="#333333", lwd=3, xlab="Year", main="Number of important discoveries per year")
译者注:参数为(数据源,颜色,线条宽度,X 轴名称,标题)
plot(discoveries, col="#333333", lwd=3, type = "h", xlab="Year", main="Number of important discoveries per year")
除了按照默认的年份排序,我们还可以排序来发现特征
sort(discoveries)
[1] 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2
[26] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3
[51] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4
[76] 4 4 4 4 5 5 5 5 5 5 5 6 6 6 6 6 6 7 7 7 7 8 9 10 12
stem(discoveries, scale=2) # 译者注:茎叶图(数据,放大系数)
The decimal point is at the |
0 | 000000000
1 | 000000000000
2 | 00000000000000000000000000
3 | 00000000000000000000
4 | 000000000000
5 | 0000000
6 | 000000
7 | 0000
8 | 0
9 | 0
10 | 0
11 |
12 | 0
max(discoveries)
12
summary(discoveries)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0 2.0 3.0 3.1 4.0 12.0
#基本的统计学操作也不需要任何编程知识
#随机生成数据 round(runif(7, min=.5, max=6.5))
译者注:runif 产生随机数,round 四舍五入
1 4 6 1 4 6 4
你输出的结果会和我们给出的不同,除非我们设置了相同的随机种子 random.seed(31337)
#从标准高斯函数中随机生成 9 次 rnorm(9)
[1] 0.07528471 1.03499859 1.34809556 -0.82356087 0.61638975 -1.88757271
[7] -0.59975593 0.57629164 1.08455362
#########################
基础编程
#########################
数值
#“数值”指的是双精度的浮点数 5 # 5 class(5) # "numeric" 5e4 # 50000 # 用科学技术法方便的处理极大值、极小值或者可变的量级 6.02e23 # 阿伏伽德罗常数# 1.6e-35 # 布朗克长度
长整数并用 L 结尾
5L # 5
#输出5L
class(5L) # "integer"
可以自己试一试?用 class() 函数获取更多信息
事实上,你可以找一些文件查阅 xyz
以及xyz的差别
xyz
用来查看源码实现,?xyz 用来看帮助
算法
10 + 66 # 76 53.2 - 4 # 49.2 2 * 2.0 # 4 3L / 4 # 0.75 3 %% 2 # 1
特殊数值类型
class(NaN) # "numeric" class(Inf) # "numeric" class(-Inf) # "numeric" # 在以下场景中会用到 integrate( dnorm(x), 3, Inf ) -- 消除 Z 轴数据
但要注意,NaN 并不是唯一的特殊数值类型……
class(NA) # 看上面 class(NULL) # NULL
简单列表
c(6, 8, 7, 5, 3, 0, 9) # 6 8 7 5 3 0 9 c('alef', 'bet', 'gimmel', 'dalet', 'he') c('Z', 'o', 'r', 'o') == "Zoro" # FALSE FALSE FALSE FALSE
一些优雅的内置功能
5:15 # 5 6 7 8 9 10 11 12 13 14 15
seq(from=0, to=31337, by=1337)
[1] 0 1337 2674 4011 5348 6685 8022 9359 10696 12033 13370 14707
[13] 16044 17381 18718 20055 21392 22729 24066 25403 26740 28077 29414 30751
letters
[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s"
[20] "t" "u" "v" "w" "x" "y" "z"
month.abb # "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep" "Oct" "Nov" "Dec"
Access the n'th element of a list with list.name[n] or sometimes list.namen
使用 list.name[n] 来访问第 n 个列表元素,有时候需要使用 list.namen
letters[18] # "r" LETTERS[13] # "M" month.name[9] # "September" c(6, 8, 7, 5, 3, 0, 9)[3] # 7
CHARACTERS
#特性
There's no difference between strings and characters in R
字符串和字符在R语言中没有区别
"Horatio" # "Horatio" #字符输出"Horatio" class("Horatio") # "character" #字符串输出("Horatio") # "character" substr("Fortuna multis dat nimis, nulli satis.", 9, 15) # "multis " #提取字符串("Fortuna multis dat nimis, nulli satis.", 第9个到15个之前并输出) gsub('u', 'ø', "Fortuna multis dat nimis, nulli satis.") # "Fortøna møltis dat nimis, nølli satis." #替换字符春,用ø替换u
LOGICALS
#逻辑值
booleans
#布尔运算 class(TRUE) # "logical" #定义为真,逻辑型 class(FALSE) # "logical" #定义为假,逻辑型
Behavior is normal
#表现的标准形式 TRUE == TRUE # TRUE TRUE == FALSE # FALSE FALSE != FALSE # FALSE FALSE != TRUE # TRUE
Missing data (NA) is logical, too
#缺失数据也是逻辑型的 class(NA) # "logical" #定义NA为逻辑型
FACTORS
#因子
The factor class is for categorical data
#因子是分类数据的定义函数
which can be ordered (like childrens' grade levels)
#可以使有序的(就像儿童的等级水平)
or unordered (like gender)
#也可以是无序的(就像性别) levels(factor(c("female", "male", "male", "female", "NA", "female"))) # "female" "male" "NA" #c("female", "male", "male", "female", "NA", "female")向量,变量是字符型,levels factor()因子的等级水平
factor(c("female", "female", "male", "NA", "female"))
female female male NA female
Levels: female male NA
data(infert) #Infertility after Spontaneous and Induced Abortion #数据集(感染) 自然以及引产导致的不育症 levels(infert$education) # "0-5yrs" "6-11yrs" "12+ yrs" #等级(感染与教育程度) 输出
VARIABLES
#变量
Lots of way to assign stuff
#许多种方式用来分配素材 x = 5 # this is possible #x = 5可能的 y <- "1" # this is preferred #y <- "1" 优先级的 TRUE -> z # this works but is weird #输出真实的,存在一个超自然数满足条件
We can use coerce variables to different classes
#我们还可以使用枪支变量去进行不同的定义 as.numeric(y) # 1 #定义数值型 as.character(x) # "5" #字符型
LOOPS
#循环
We've got for loops
#循环语句 for (i in 1:4) { print(i) } #定义一个i,从1-4输出
We've got while loops
#我们可以获取循环结构 a <- 10 while (a > 4) { cat(a, "...", sep = "") a <- a - 1 } #把10负值为a,a<4,输出文件(a,"...",sep="" ),跳出继续下一个循环取a=a-1,如此循环,直到a=10终止
Keep in mind that for and while loops run slowly in R
#在R语言中牢记 for和它的循环结构
Operations on entire vectors (i.e. a whole row, a whole column)
#牢记矢量中附带的操作(例如,整行和整列)
or apply()-type functions (we'll discuss later) are preferred
#或者优先使用()-函数,稍后会进行讨论
IF/ELSE
#判断分支
Again, pretty standard
#再一次,看这些优雅的标准 if (4 > 3) { print("Huzzah! It worked!") } else { print("Noooo! This is blatantly illogical!") }
=>
[1] "Huzzah! It worked!"
FUNCTIONS
#功能函数
Defined like so:
#定义如下 jiggle <- function(x) { x+ rnorm(x, sd=.1) #add in a bit of (controlled) noise return(x) } #把功能函数x负值给jiggle,
Called like any other R function:
jiggle(5) # 5±ε. After set.seed(2716057), jiggle(5)==5.005043
#########################
Fun with data: vectors, matrices, data frames, and arrays
数据参数:向量,矩阵,数据框,数组,
#########################
ONE-DIMENSIONAL
#单维度
You can vectorize anything, so long as all components have the same type
#你可以将任何东西矢量化,因此所有的组分都有相同的类型 vec <- c(8, 9, 10, 11) vec # 8 9 10 11
The class of a vector is the class of its components
#矢量class表示这一组分的类型 class(vec) # "numeric"
If you vectorize items of different classes, weird coercions happen
#如果你强制的将不同类型的classes矢量化,会发生超自然形式的函数,例如都转变成数值型、字符型 c(TRUE, 4) # 1 4 c("dog", TRUE, 4) # "dog" "TRUE" "4"
We ask for specific components like so (R starts counting from 1)
#我们可以找寻特定的组分,例如这个例子(R从1算起) vec[1] # 8
We can also search for the indices of specific components,
#我们也可以从这些特定组分中找寻这些指标 which(vec %% 2 == 0) # 1 3
or grab just the first or last entry in the vector
#抓取矢量中第1个和最后一个字符 head(vec, 1) # 8 tail(vec, 1) # 11 #如果指数结束或不存在即"goes over" 可以获得NA
If an index "goes over" you'll get NA:
vec[6] # NA
You can find the length of your vector with length()
#你也可以找到矢量的长度 length(vec) # 4
You can perform operations on entire vectors or subsets of vectors
#你可以将整个矢量或者子矢量集进行展示 vec * 4 # 16 20 24 28
vec[2:3] * 5 # 25 30
and there are many built-in functions to summarize vectors
#这里有许多内置的功能函数,并且可对矢量特征进行总结 mean(vec) # 9.5 var(vec) # 1.666667 sd(vec) # 1.290994 max(vec) # 11 min(vec) # 8 sum(vec) # 38
TWO-DIMENSIONAL (ALL ONE CLASS)
#二维函数
You can make a matrix out of entries all of the same type like so:
#你可以建立矩阵,保证所有的变量形式相同 mat <- matrix(nrow = 3, ncol = 2, c(1,2,3,4,5,6)) #建立mat矩阵,3行2列,从1到6排列,默认按列排布 mat
=>
[,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6
Unlike a vector, the class of a matrix is "matrix", no matter what's in it
class(mat) # => "matrix"
Ask for the first row
#访问第一行的字符 mat[1,] # 1 4
Perform operation on the first column
#优先输入第一列,分别×3输出 3 * mat[,1] # 3 6 9
Ask for a specific cell
#访问特殊的单元,第3行第二列 mat[3,2] # 6
Transpose the whole matrix
#转置整个矩阵,变成2行3列 t(mat)
=>
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
cbind() sticks vectors together column-wise to make a matrix
把两个矩阵按列合并,形成新的矩阵 mat2 <- cbind(1:4, c("dog", "cat", "bird", "dog")) mat2
=>
[,1] [,2]
[1,] "1" "dog"
[2,] "2" "cat"
[3,] "3" "bird"
[4,] "4" "dog"
class(mat2) # matrix #定义mat2矩阵
Again, note what happened!
#同样的注释
Because matrices must contain entries all of the same class,
#矩阵必须包含同样的形式
everything got converted to the character class
#每一个变量都可以转化成字符串形式 c(class(mat2[,1]), class(mat2[,2]))
rbind() sticks vectors together row-wise to make a matrix
#按行合并两个向量,建立新的矩阵 mat3 <- rbind(c(1,2,4,5), c(6,7,0,4)) mat3
=>
[,1] [,2] [,3] [,4]
[1,] 1 2 4 5
[2,] 6 7 0 4
Aah, everything of the same class. No coercions. Much better.
TWO-DIMENSIONAL (DIFFERENT CLASSES)
##二维函数(不同的变量类型)
For columns of different classes, use the data frame
利用数组可以将不同类型放在一起 dat <- data.frame(c(5,2,1,4), c("dog", "cat", "bird", "dog")) #dat<-数据集(c(5,2,1,4), c("dog", "cat", "bird", "dog")) names(dat) <- c("number", "species") # name the columns #给每一个向量命名 class(dat) # "data.frame" #建立数据集dat dat
=>
number species
1 5 dog
2 2 cat
3 1 bird
4 4 dog
class(dat$number) # "numeric" class(dat[,2]) # "factor"
The data.frame() function converts character vectors to factor vectors
#数据集,将字符特征转化为因子矢量
There are many twisty ways to subset data frames, all subtly unalike
#这里有许多种生成数据集的方法,所有的都很巧妙但又不相似 dat$number # 5 2 1 4 dat[,1] # 5 2 1 4 dat[,"number"] # 5 2 1 4
MULTI-DIMENSIONAL (ALL OF ONE CLASS)
#多维函数
Arrays creates n-dimensional tables
#利用数组创造一个n维的表格
You can make a two-dimensional table (sort of like a matrix)
#你可以建立一个2维表格(类型和矩阵相似) array(c(c(1,2,4,5),c(8,9,3,6)), dim=c(2,4)) #数组(c(c(1,2,4,5),c(8,9,3,6)),有前两个向量组成,2行4列
=>
[,1] [,2] [,3] [,4]
[1,] 1 4 8 3
[2,] 2 5 9 6
You can use array to make three-dimensional matrices too
#你也可以利用数组建立一个三维的矩阵 array(c(c(c(2,300,4),c(8,9,0)),c(c(5,60,0),c(66,7,847))), dim=c(3,2,2))
=>
, , 1
[,1] [,2]
[1,] 2 8
[2,] 300 9
[3,] 4 0
, , 2
[,1] [,2]
[1,] 5 66
[2,] 60 7
[3,] 0 847
LISTS (MULTI-DIMENSIONAL, POSSIBLY RAGGED, OF DIFFERENT TYPES)
#列表(多维的,不同类型的)
Finally, R has lists (of vectors)
#R语言有列表的形式 list1 <- list(time = 1:40) list1$price = c(rnorm(40,.5*list1$time,4)) # random list1
You can get items in the list like so
#你可以获得像上面列表的形式 list1$time
You can subset list items like vectors
#你也可以获取他们的子集,一种类似于矢量的形式 list1$price[4]
#########################
The apply() family of functions
#apply()函数家族的应用 #########################
Remember mat?
#输出mat矩阵 mat
=>
[,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6
Use apply(X, MARGIN, FUN) to apply function FUN to a matrix X
#使用(X, MARGIN, FUN)将一个function功能函数根据其特征应用到矩阵x中
over rows (MAR = 1) or columns (MAR = 2)
#规定行列,其边界分别为1,2
That is, R does FUN to each row (or column) of X, much faster than a
#即就是,R定义一个function使每一行/列的x快于一个for或者while循环
for or while loop would do
apply(mat, MAR = 2, myFunc)
=>
[,1] [,2]
[1,] 3 15
[2,] 7 19
[3,] 11 23
Other functions: ?lapply, ?sapply
其他的功能函数,
Don't feel too intimidated; everyone agrees they are rather confusing
#不要被这些吓到,许多人在此都会容易混淆
The plyr package aims to replace (and improve upon!) the *apply() family.
#plyr程序包的作用是用来改进family函数家族
install.packages("plyr") require(plyr) ?plyr
#########################
Loading data
#########################
"pets.csv" is a file on the internet
#"pets.csv" 是网上的一个文本 pets <- read.csv("http://learnxinyminutes.com/docs/pets.csv") #首先读取这个文本 pets head(pets, 2) # first two rows #显示前两行 tail(pets, 1) # last row #显示最后一行
To save a data frame or matrix as a .csv file
#以.csv格式来保存数据集或者矩阵 write.csv(pets, "pets2.csv") # to make a new .csv file #输出新的文本pets2.csv
set working directory with setwd(), look it up with getwd()
#改变工作路径setwd(),查找工作路径getwd()
Try ?read.csv and ?write.csv for more information
#试着做一做以上学到的,或者运行更多的信息
#########################
Plots
#画图 #########################
Scatterplots!
#散点图 plot(list1$time, list1$price, main = "fake data") #作图,横轴list1$time,纵轴list1$price,主题fake data
Regressions!
#退回 linearModel <- lm(price ~ time, data = list1)
线性模型,数据集为list1,以价格对时间做相关分析模型
linearModel # outputs result of regression #输出拟合结果,并退出
Plot regression line on existing plot
#将拟合结果展示在图上,颜色设为红色 abline(linearModel, col = "red")
Get a variety of nice diagnostics
#也可以获取各种各样漂亮的分析图 plot(linearModel)
Histograms!
#直方图 hist(rpois(n = 10000, lambda = 5), col = "thistle") #统计频数直方图()
Barplots!
#柱状图 barplot(c(1,4,5,1,2), names.arg = c("red","blue","purple","green","yellow")) #作图,柱的高度负值c(1,4,5,1,2),各个柱子的名称"red","blue","purple","green","yellow"
Try the ggplot2 package for more and better graphics
#可以尝试着使用ggplot2程序包来美化图片 install.packages("ggplot2") require(ggplot2) ?ggplot2